考研数学:函数连续与间断,谁说了算?|考研数学-pg电子游戏官网
2015-07-02 来自: pg电子游戏官网-pg电子游戏网站 浏览次数:417
连续是我们微积分学中,对极限的 个应用。从它字面意思或是深入到几何意义就是说,函数的图像是连续不断的。在考研中,连续会在选择填空中单独考察或与其他函数知识结合综合考察,在大题中对于函数连续的考察也很多见。
首先,所谓连续即“极限值=函数值”,这一个等式包含了三个方面,1、函数必须在该点处有定义;2、函数必须在这个点附近存在极限;3、是前面1、2两点的内容必须相等,同时满足这三个条件,才叫做函数在某点处连续。看到,判断函数连续,要先求极限,所以,如何求函数在该点处的极限值或是用极限存在的充要条件(左右极限存在且相等),是一个隐含的知识点。
其次,我们自然会问,会不会有不连续的点呢?答案当然是肯定的,不连续的点就是我们所说的---间断点。那么所谓“不连续”就是不能同时满足连续的三个条件的点,即1、函数在该点处没有定义;2、若函数在该点有定义,但函数在该点附近的极限不存在;3、虽然函数在该点处有定义,极限也存在,但是二者不相等。
对于间断点,根据左右极限存在与否,我们把它分为两类。若左右极限都存在的间断点,称为 类间断点;若左右极限相等,这个间断点称为 类间断点中的可去间断点;若左右极限不相等,这个间断点称为 类间断点中的跳跃间断点。若左右极限中至少有一个不存在(包含极限等于无穷的情形)的间断点,称为第二类间断点;若其中一个极限是趋于无穷的,这个间断点就称为无穷间断点;若极限是在两个常数之间来回振荡的,就称为振荡间断点。
后,对于连续性 重要的应用或者是说考研中的一个小难点,就是闭区间上连续函数的三个性质: 小值定理、零点定理、介值定理。
对于上面的知识点,我们看看在考研中是怎么考察的。对于连续的概念,难度上属于简单知识点。首先,在十五年前,对于连续性的考查,更多的是给一个分段函数,然后判断分段点处函数的连续性,这是一个基本题型,只需判断连续的三个条件即可,其实主要是考查求函数某点处左右极限的值。然后,进入20世纪,考查又倾向于在选择题当中,给一个函数,让大家来判断这个函数有多少间断点,间断点的类型是什么,这个又比之前考查的更高一层。 后,就是在逻辑推理题中,考查零点定理,介值定理,通常,考查介值定理的时候也会用到 值定理。我们归纳题型知道,判断方程根的情况的时候,一般用零点定理;题干中包含好几个函数值相加的时候,一般用介值定理。具体在证明题中怎么用,我们会在专门的证明题专题中讲解。
上面是对连续概念本身做出的分析。还有连续与极限存在,可导,可微的关系也是选择题中考查的热点,这个我们在后续一元函数导函数中详细说明。